
Toward the Implementation of a Quantum RBM

Misha Denil
Department of Computer Science
University of British Columbia

Vancouver, BC
mdenil@cs.ubc.ca

Nando de Freitas
Department of Computer Science
University of British Columbia

Vancouver, BC
nando@cs.ubc.ca

Abstract

Quantum computers promise the ability to solve many types of difficult computa-
tional problems efficiently. It turns out that Boltzmann Machines are ideal candi-
dates for implementation on a quantum computer, due to their close relationship
to the Ising model from statistical physics. In this paper we describe how to use
quantum hardware to train Boltzmann Machines with connections between latent
units. We also describe the architecture we are targeting and discuss difficulties
we face in applying the current generation of quantum computers to this hard
problem.

1 Introduction

Boltzmann Machines are very general and powerful models of structure in data; however, despite
being known for many years, there has been very little work done with these models due to the
complexity of training [1]. For special cases of the general model (most notably the Restricted
Boltzmann Machine) there are efficient training methods, and there has been extensive research into
RBMs in recent years due to their power and tractability.

The key feature which makes RBMs tractable is that they are designed to have an advantageous
conditional independence structure, which allows us to define efficient block Gibbs samplers to
draw approximate samples from the model distribution. In contrast, the conditional distributions in
a general Boltzmann Machine are quite complex (drawing exact samples is NP-hard in the worst
case), which makes sampling extremely difficult.

The Boltzmann Machine is equivalent to a model from statistical physics known as the Ising model.
While this is a fairly pedestrian fact mathematically (the equivalence is realized by a simple change
of variables) it has important practical consequences. The Ising model is a mathematical description
of a physical phenomenon, which suggests the following procedure for sampling from a Boltzmann
Machine:

1. Transform the Boltzmann Machine into an Ising model.

2. Set up a physical system which realizes the transformed problem and “run the physics” to
allow the system to equilibrate.

3. Measure the system to obtain a realization of states in the Ising model.

4. Transform the Ising samples into samples from the Boltzmann Machine.

This procedure transforms the difficult sampling step from a software problem into a physics prob-
lem. D-Wave Systems has developed a hardware system capable of realizing steps (2) and (3) in the
above procedure [13]. The D-Wave hardware provides programmatic access to a highly specialized
physical system, whose properties can be manipulated to correspond to a specified Ising model. The
system exploits quantum mechanics to settle quickly into a low energy state, which can be measured

1

to obtain a sample from the original model. The D-Wave hardware is able to realize Ising models
with complex graphical structure, which are very expensive to sample from in software.

The purpose of this paper is to explore methods of learning parameters for latent connections in
Boltzmann Machines, in anticipation of realizing these algorithms on the quantum hardware. In
order to maintain software tractability, we consider only small models and simple problems and
focus our efforts on developing algorithms which are suitable for implementation on the D-Wave
machine. We provide a description of the functionality provided by the D-Wave system, and discuss
some practical difficulties we have encountered working with the current generation of hardware.

From a deep learning perspective the quantum hardware will enable us to sample from models with
lateral connections. We anticipate such models will be better for many tasks than models which
assume independence. This investigation is also important from a quantum computing perspective.
D-Wave has demonstrated the quantum properties of a small version of their machine [13], and the
big challenge now is to show that the hardware is able to solve hard problems in a more efficient
way than a classical computer.

Finally, this paper also presents an efficient exact block sampling method for RBMs with chain and
tree structured lateral connections.

2 Background

A Boltzmann Machine is a probabilistic graphical model defined on a complete graph of binary
variables. We can partition the graph into “visible” units v, where values are observed during
training and “hidden” units h, where values must be inferred. The probability of observing a state
in the Boltzmann Machine is governed by its energy function

E(v,h) = −
∑
ij

Wijvihj −
∑
jk

Ujkhjhk −
∑
i`

Li`viv`

where W, U and L are matrices of parameters. This model is very general, but is not used in practice
because it is very difficult to train [19]. Salakhutdinov [18] studied fully connected Boltzmann
Machines and demonstrated a variational learning procedure which was effective with as many as
500 hidden units; however, applications of this model in its most general form are scarce.

An important special case of this model is the Restricted Boltzmann Machine [9], which disallows
interactions between pairs of visible and pairs of hidden units. Restricting the model in this way cre-
ates conditional independence between the hidden and visible units, allowing efficient block Gibbs
sampling. This model has seen great success and wide spread application in recent years.

Different restrictions of the Boltzmann Machine have also been studied. The Semi-Restricted Boltz-
mann Machine [16] relaxes the conditions imposed in the RBM by allowing the visible units to
interact. In this model inference over the visible units is approximate; however, it has been ob-
served [19] that training is still effective as long as the reconstructions have lower free energy than
the data. While approximate inference works well for the visible units, it is important that the hidden
unit states are sampled from their exact posterior [16]. This fact makes adding interactions between
hidden units more difficult, since exact sampling in complex graphs is very difficult.

Schulz et al. [19] studied Restricted Boltzmann Machines with hidden interactions; however, they
heavily restrict the connectivity between the visible and hidden units in order to enforce a topology
in the visible layer of their model. Their model has very different structure than the ones we consider
here, and likely has many different properties.

Our proposed method is surprisingly similar to work done in the early 90’s on implementing neural
networks in VLSI circuits [8, 3, 7, 6]. These works used a weight perturbation scheme very similar
to the one we propose in this paper; however, the motivations are very different. In VLSI, weight
perturbation schemes are desirable because they can be implemented more efficiently than traditional
training algorithms [11]. Our use of perturbation is motivated by very different concerns, which we
outline in Section 5.

2

3 P6=NP and why we’re not crazy

Much like artificial intelligence in its early days, the reputation of quantum computing has been
tarnished by grand promises and few concrete results. Talk of quantum computers is often closely
flanked by promises of polynomial time solutions to NP-Hard problems and other such implausible
appeals to blind optimism. In this section we attempt to placate the understandably sceptical reader
by providing a brief description of the computational model on which the D-Wave machine is based,
as well as some intuition for how it could help us solve hard problems even if P6=NP. Naturally this
is far too large a topic to cover fully in this paper. More in depth discussions can be found in the
references from this section, with [17] providing a brief but very accessible introduction.

The D-Wave machine is based on the idea of Adiabatic Quantum Computation. AQC is a formal
model of quantum computation (in much the same way a Turing Machine is a formal model of
classical computation) which has been shown to be universal [12, 2]. Intuitively, AQC works by
starting with a problem which is easily solvable and then slowly transforming it into the problem of
interest. If the transformation is carried out sufficiently slowly then a solution to the easy problem
can be transformed into a solution to the problem of interest without ever solving the hard problem
directly. Unfortunately, it can be shown that for NP-Hard problems, going “sufficiently slowly”
requires exponential time [4].

The relationship between AQC and the D-Wave machine parallels the relationship between a Turning
Machine and a desktop computer. A Turing Machine has an infinite tape on which to write symbols,
while a desktop computer has finite memory. From this perspective we can view a Turing Machine
as the “large memory” limit of a desktop computer. Analogically, AQC can be understood as the
“long time” limit of the D-Wave architecture.

The D-Wave machine uses a process known as quantum annealing, which is essentially a fast, ap-
proximate version of AQC. Both procedures work by transforming the solution to an easy problem
into the solution to a hard problem, but QA does this transformation quickly at the cost of not being
able to guarantee an optimality. However, all is not lost, since the solutions produced by QA are not
completely arbitrary but are in fact samples from a Boltzmann distribution (the shape of which is
determined by the problem).

The energy landscape, which determines the probability distribution over states, is shaped so that
better problem solutions have lower energy (and thus higher probability of occurring). This allows
QA to be used for optimization, by selecting the lowest energy result after several runs; or for
sampling, by aggregating the results of several runs into a population of samples.

Since this is essentially a quantum analog of simulated annealing one might wonder if there is any
advantage using QA. However, there is experimental evidence which suggests that QA is superior
to its classical counterpart [5], at least for certain types of problems.

4 Model

In this paper we consider Restricted Boltzmann Machines with two different patterns of latent con-
nections. We first consider chain structures, which give rise to models which are simple enough that
they can be simulated efficiently in software, but are also sufficiently complex that they can serve
as a testbed when designing algorithms for the D-Wave hardware. We also consider a more com-
plex graphical structure on the hidden units, which reflects a scaled down version of the connection
patterns available on the D-Wave machine.

Although the hidden units in these models are no longer conditionally independent, for the chain
model we can still obtain samples quickly using a backward filtering forward sampling algorithm.
We can also use this algorithm to sample from general graph structures, but the complexity required
to do so grows very quickly.

4.1 Backward filtering forward sampling

For simplicity, we describe the exact sampling algorithm only for the case where the hidden units
have chain structured dependencies, and provide references for where the details of the general
algorithm can be found.

3

Figure 1: The model we study in this paper. The visible units are binary valued and are conditionally
independent given the hiddens. The hidden units are also binary valued but have correlations in their
conditional distribution. We consider both chain structured connections between the hidden units,
as well as a more complex graph structure which reflects the architecture of the D-Wave machine.
Units which are intended to be realized on the quantum hardware are marked with a small diagonal
bar.

Suppose we have a Restricted Boltzmann Machine whose energy function is given by

E(v,h) = −
∑
ij

Wijvihj −
∑
|j−k|<2

Ujkhjhk −
∑
i

Liivi ,

where we have allowed hidden units to interact with their neighbours (i.e. the hidden connections
form a chain). Although we can still sample from P (v|h) directly, the conditional distribution over
the hidden units is not so simple. The following procedure allows us to draw samples from this more
complex distribution efficiently.

Because of how the hidden connections have been restricted, the conditional distribution over the
hidden units factors as

p(h|v) = p(h1 = 1|v)
|h|∏
j=2

p(hj = 1|h1:j−1,v) = p(h1 = 1|v)
|h|∏
j=2

p(hj = 1|hj−1,v) .

The conditional distributions in this product are easy to sample from, the only problematic term is
the marginal p(h1 = 1|v). If we could sample h1 ∼ p(h1 = 1|v) from the marginal then we could
use the conditional distributions to sample sequentially from the joint.

The marginal distribution for p(h1 = 1) can be found via a backwards pass of belief propagation.
Starting at the end of the chain, for each j = |h| − 1, . . . , 1 we compute

mj+1→j(hj) =
∑
hj+1

φj+1(hj+1)ψj+1(hj , hj+1)mj+2→j+1(hj+1) (1)

(where m|h|+1→|h|(·) , 1). In the above expression the φ’s are unary potentials of the conditional
distribution, and the ψ’s are binary potentials. The marginal distribution p(h1 = 1) is then given by

p(h1 = 1) ∝ φ1(h1)m2→1(h1)

and we can find the normalizing constant by summing over h1. In our case the binary potentials in
Equation 1 take the form ψj+1(hj , hj+1) = (Uj+1,j + Uj,j+1)hjhj+1 and the unary potentials are
given by

φj(hj) =
∑
i

Wijvi + Ujj

as in an ordinary RBM.

The backward filtering forward sampling method we have described can be extended from chains to
trees in a straightforward way; however for general graph structures (which may include cycles) the
method described here cannot be employed directly. For general graphs we can form a junction tree
and do the backwards filtering pass there to compute the marginal distribution for one of the nodes.
We can then sample from the whole graph using conditional distributions in much the same way as
we have described here. The transformation to a junction tree is non-trivial, but is a fairly standard
operation, and we refer the interested reader to [10, 14] for the details. Unfortunately, in this setting
the backward filtering step has complexity which is exponential in the tree width of the graph, so in
practice we are restricted to either very small graphs or very simple connectivity patterns.

4

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 832

Figure 2: Some examples of Chimera graphs. Left: A line diagram of a Chimera(3,3,4) graph
showing the connections between qubits. Right: The connectivity matrix for a Chimera(4,4,4)
graph. For a general Chimera(M,N,L) graph the connectivity matrix is given by

A = IM ⊗ IN ⊗
[
0 1
1 0

]
⊗ 1L + LM ⊗ IN ⊗

[
1 0
0 0

]
⊗ IL + IM ⊗ LN ⊗

[
0 0
0 1

]
⊗ IL

where ⊗ is the Kronecker product, In is the n× n identity matrix, 1n is the n× n matrix of 1’s and
Ln is the adjacency matrix for a chain of length n.

4.2 Chimera graphs

Although the D-Wave hardware is not able to realize a fully connected Ising model it is capable
of handling graph structures more general than chains or trees. The architecture is able to realize
structures from a family of graphs called Chimeras. Chimera graphs are built by interconnecting a
two dimensional grid of small bipartite graphs. This family of graphs can be described succinctly
by three parameters; a Chimera(M,N,L) graph is assembled from an M ×N grid of L× L dense
bipartite graphs, connected as shown in Figure 2.

Although the Chimera graphs are sparse, they are non-planar and are of moderately high tree width (a
Chimera(N,M,L) graph has tree width Lmin(M,N)), which makes them difficult to sample from
in software. The current version of the D-Wave hardware implements a Chimera(4,4,4) structure,
and future generations of hardware will provide larger graphs.

5 Parameter Warping

The D-Wave hardware enables us to draw samples from graph structures which would be otherwise
intractable, but there are still some practical difficulties to overcome. This is not surprising, since
the hardware is still very new. We expect these difficulties to be resolved in time, but for the moment
they are a serious concern.

The most difficult problem we have encountered is something we call parameter warping. In order to
use the D-Wave hardware to draw samples, it is necessary to program the machine with parameters
for the desired distribution. Currently there is a systematic warping phenomenon which occurs when
we program the machine. This warping perturbs the parameters from their desired settings, so that
the distribution realized by the hardware is actually not the distribution we specify, but is instead a
nearby distribution whose parameters are slightly different. Concretely, given a distribution P (·|θ)
from which we would like to draw samples, realizing this distribution in hardware produces samples
from the nearby distribution P (·|W (θ)) for some unknown, systematic warping function W .

Computing the maximum likelihood gradients in an RBM requires evaluating expressions of the
form

ED
[
∂

∂θ
logP (D|θ)

]
= −ED

[
∂

∂θ
E(θ)

]
+ EM

[
∂

∂θ
E(θ)

]
(2)

5

where the first expectation on the right hand side is taken over the data distribution and the second
expectation is over the distribution defined by the model. In our case, parameter warping replaces
the E(θ) terms in the above expression with E(W (θ)). If W were known then this would pose no
obstacle, since we could simply expand the gradients in Equation 2 using the chain rule and proceed
as before. Unfortunately, this is not the case.

Although we do not have a good model for the warping function W , we do have some idea of
its general structure. The warping appears to be caused by interactions between nearby parameter
realizations in the hardware. This makes the warping function local, so that parameters whose
realizations are physically separate on the hardware do not interact in the warping function. On the
other hand, parameters which do interact appear to do so in a non-linear way, which makes building
a model of W difficult.

A possible approach to this problem is to estimate W for many parameter values and build a regres-
sion model, but this is a poor solution since W is a very high dimensional function (W : R832 →
R832 on the current generation of hardware), so the model is likely to be poor. Additionally, even
if we could estimate W to high accuracy, the relevant quantity which affects our optimization is the
gradient of W , and even a very good model for the value of W is unlikely to provide a good model
for its gradients.

It turns out that not knowing W makes this problem quite difficult, since it precludes the use of
many standard techniques. For instance, one might try to take advantage of the fact that the distance
between P (·|θ) and P (·|W (θ)) should be fairly small in order to do importance or rejection sam-
pling with P (·|W (θ)) as a proposal for P (·|θ). Unfortunately, computing the importance weights
for this procedure requires the ability to evaluate W , which we do not have.

In order to overcome this problem, we have designed a procedure which optimizes the connection
strengths between hidden units as a black box function. We cannot use the maximum likelihood
objective, for the reasons we have outlined above, but we can instead adjust the latent connec-
tion strengths to optimize one-step reconstruction error while training the visible-hidden connection
weights with the ordinary rule. Exact gradients of this objective still require knowledge of W , but
as we demonstrate, we can optimize this objective by treating the reconstruction error as a black
box function of θ and approximating the gradients empirically. Computing empirical gradients re-
quires many evaluations of the objective function, making it time consuming in high dimensions.
We employ a stochastic approximation to finite differencing to reduce the computational cost to a
manageable level.

Unfortunately, under our procedure we never recover the parameters of the model we are using. The
result of our approach is a vector θ such that the warped vector W (θ) contains the parameters of
our model, which means we cannot decouple our model from the machine.

5.1 Simultaneous Perturbation Stochastic Approximation

Simultaneous Perturbation Stochastic Approximation (SPSA) is an algorithm for approximate gra-
dient based optimization of noisy, differentiable, black box functions [20]. SPSA requires that the
objective be differentiable, but unlike traditional stochastic gradient methods it does not require
explicit access to the objective gradient.

SPSA estimates the objective gradient at each step using a stochastic variant of the finite difference
approximation. Forming the ordinary finite difference approximation is expensive in high dimen-
sions, since it requires 2d evaluations of the objective (where d is the dimensionality of the problem).
In contrast, SPSA is able to function with exactly 2 objective evaluations at each step, regardless of
the dimensionality.

Formally, given an objective function J(θ) and an initial value θ0, at time t during the optimization
SPSA preforms the update

θt+1 = θt − atgt(θt) ,

where gt(θt) is a stochastic estimate of the gradient of J(θt) given by

∇θJ(θt) ≈ gt(θt) =
1

2ct
(J(θt + ct∆t)− J(θt − ct∆t))∆

−1
t .

6

In the above equation, ∆−1t denotes the elementwise inverse of the vector ∆t, which is chosen
randomly at each time step from a suitable distribution. Many distributions are appropriate here
(although some obvious choices such as Gaussian or uniform are not valid), but the simplest choice
is to sample the elements of ∆t independently from {−1, 1} with equal probability.

The optimization is controlled by two gain sequences at and ct, good selection of which is critical for
the optimization to preform well.1 It can be shown that, given some reasonably general conditions,
SPSA is able to achieve the same level of accuracy as ordinary finite difference methods for a fixed
number of iterations, even if the objective function is noisy.

6 Experiments

In this section we describe the results of two experiments designed to test the procedure outlined
in the previous sections. The results demonstrate that our proposal to adjust the hidden connection
weights to minimize reconstruction error can be applied successfully in software.

We trained four different RBM models with varying latent structure:

1. The vanilla model is an ordinary RBM trained using stochastic maximum likelihood, which
we include here as a reference model.

2. The chain grad model is an RBM with chain structured connections between the hidden
units. We train all the parameters in this model using stochastic maximum likelihood.

3. The chain spsa model is again an RBM with chain structured hidden connections; however,
the latent connections in this model are trained to optimize reconstruction error using SPSA
as described in Section 5.1. The visible-hidden connections are trained using stochastic
maximum likelihood.

4. The chimera spsa model is trained using the same procedure as in chain spsa, but the latent
connections in this model are connected in a Chimera(3,3,3) pattern.

In the interest of consistency, all the models we consider here have 54 hidden units. We have re-
stricted ourselves to small models in order to make software sampling in the Chimera graph feasible.
Even with only 54 units, training the chimera spsa model in software takes many hours.

0 20 40 60 80
epoch

18

20

22

24

26

28

30

m
se

Blackout Test

vanilla
chain grad
chain spsa
chimera spsa

0 20 40 60 80
epoch

80

85

90

95

100

105

110

115

120

m
se

Denoise Test

vanilla
chain grad
chain spsa
chimera spsa

Figure 3: Left: One step reconstruction error for filling in a partially blacked out image during
training. The vanilla model is an ordinary RBM with no special latent structure, which we show here
for comparison. The chain grad model is an RBM with chain structured latent connections trained
using the stochastic maximum likelihood gradient. The chain spsa model has the same structure
as chain grad, but the latent connections are trained to minimize reconstruction error using SPSA.
Finally, the chimera spsa model is also trained to minimize reconstruction error, but the hidden units
are connected in a Chimera(3,3,3) pattern. All of the models shown here have 54 hidden units.
Right: Reconstruction error for the denoising task during training. Each test image was corrupted
with 20% random Bernoulli noise and the one step reconstruction error is shown. The models in this
figure are the same as in the left panel.

1See [20] for a discussion on how to set these sequences.

7

We train our models using the 16 × 16 pixel version of the Caltech 101 Silhouettes2 data set [15].
This data set is a binarized version of Caltech 101, where a silhouette of the target object in each of
the original images has been rendered in solid black on a white background. We use the provided
train and test split and do no additional pre-processing before learning.

The left plot in Figure 3 shows squared reconstruction error of the test set for each of our models as
training progresses. To produce this figure we blacked out a 64 pixel region from each of the test
images and compute one step reconstruction error in the blacked out region. From this plot we can
see that the models with latent connections are able to achieve lower error rates than the baseline
RBM. Importantly, the performance of the chain grad model is much better than the performance
of the vanilla RBM. This demonstrates how latent structure can proved benefits on even this simple
problem.

The right plot in Figure 3 shows a different experiment with the same set of models. For this exper-
iment we randomly corrupted the test images with Bernoulli noise and computed the reconstruction
error over the entire image. Performance of the various models is similar to their performance in the
blackout experiment.

It is interesting that in both experiments chimera spsa is not able to achieve a lower error rate than
chain spsa, despite being a more flexible model; however, the tasks we have considered are fairly
simple, and our models are quite small, so it is likely that the additional hidden connections are
simply not beneficial in this setting.

It is comforting that the spsa models achieve the lowest error rate in both experiments, but one
should be careful not to assign too much weight to this fact. The grad models are trained using
stochastic maximum likelihood for all connections, which maximizes the probability of observing
the training data under the model. In contrast, the objective used in the spsa models optimizes the
latent connection terms to explicitly minimize reconstruction error. In that sense our comparison
between the grad and spsa models in Figure 3 is unfair; however, our intention is not to claim that
the SPSA objective is a superior method for training RBMs in general, but rather to demonstrate that
our objective produces reasonable results on some common tasks.

7 Conclusion

In this paper we described how the quantum computer developed by D-Wave Systems can be used
as a tool to train Boltzmann Machines. The ability of the hardware to sample from complex Ising
models presents exciting opportunities for training Boltzmann Machines with more connections than
is typically seen in applications. We described a parameter warping phenomenon which is present
in the current generation of hardware, and discussed the implications it has for using the D-Wave
hardware as a tool for training deep models.

To deal with the parameter warping issue we have designed a procedure for tuning the latent connec-
tions in a Boltzmann Machine to minimize reconstruction error on the training set. Our optimization
method works in this setting since it is able to operate without knowledge of the relationship between
parameter and objective values. We have demonstrated that our procedure is effective in software,
and we hope extend this demonstration to training RBMs directly on the quantum hardware in the
near future.

Acknowledgments

We would like to thank Firas Hamze and Ziyu Wang for their helpful input. This work was supported
by CIFAR-NCAP and a MITACS/D-Wave Systems grant.

References
[1] D.H. Ackley, G.E. Hinton, and T.J. Sejnowski. A Learning Algorithm for Boltzmann Machines. Cognitive

science, 9(1):147–169, 1985.
[2] Dorit Aharonov, Wim van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev. Adiabatic

quantum computation is equivalent to standard quantum computation. SCIAM Review, 2008. http:
//dx.doi.org/10.1137/080734479.

2http://www.cs.umass.edu/˜marlin/data.shtml

8

http://dx.doi.org/10.1137/080734479
http://dx.doi.org/10.1137/080734479
http://www.cs.umass.edu/~marlin/data.shtml

[3] Joshua Alspector, Ronny Meir, B. Yuhas, A. Jayakumar, and D. Lippe. A parallel gradient descent method
for learning in analog VLSI neural networks. In Advances in Neural Information Processing Systems 5,
[NIPS Conference], pages 836–844, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[4] M. H. S. Amin. Effect of local minima on adiabatic quantum optimization. arXiv, 2008.
arXiv:0709.0528v2 [quant-ph].

[5] J. Brooke, D. Bitko, G. Aeppli, et al. Quantum annealing of a disordered magnet. Science, 284(5415):779,
1999.

[6] Gert Cauwenberghs. A fast stochastic error-descent algorithm for supervised learning and optimization.
In In, pages 244–251. Morgan Kaufmann, 1993.

[7] Gert Cauwenberghs. A learning analog neural network chip with continuous-time recurrent dynamics. In
In, pages 858–865. Morgan Kaufmann Publishers, 1994.

[8] A. Dembo and T. Kailath. Model-free distributed learning. Neural Networks, IEEE Transactions on,
1(1):58 –70, mar 1990.

[9] G. E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 1554:1527–1554, 2006.

[10] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide. International
Journal of Approximate Reasoning, 15:225–263, 1996.

[11] M. Jabri and B. Flower. Weight perturbation: an optimal architecture and learning technique for analog
vlsi feedforward and recurrent multilayer networks. Neural Networks, IEEE Transactions on, 3(1):154
–157, jan 1992.

[12] Peter J. Love Jacob D. Biamonte. Realizable hamiltonians for universal adiabatic quantum computers.
arXiv, 2011. arXiv:0704.1287v2 [quant-ph].

[13] MW Johnson, MHS Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, AJ Berkley, J. Jo-
hansson, P. Bunyk, et al. Quantum annealing with manufactured spins. Nature, 473(7346):194–198,
2011.

[14] D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques. The MIT Press,
2009.

[15] B.M. Marlin, K. Swersky, B. Chen, and N. de Freitas. Inductive principles for restricted boltzmann
machine learning. In Proceedings of The Thirteenth International Conference on Artificial Intelligence
and Statistics (AISTATS10), volume 9, pages 509–516, 2009.

[16] Simon Osindero and G. E. Hinton. Modeling image patches with a directed hierarchy of markov random
elds. Neural Networks, pages 1–8, 2008.

[17] Geordie Rose and William Macready. An Introduction to Quantum Annealing. Technical report, D-Wave
Systems, 2007. http://dwave.files.wordpress.com/2007/08/20070810_d-wave_
quantum_annealing.pdf.

[18] Ruslan Salakhutdinov. Learning and evaluating boltzmann machines. Technical report, University of
Toronto, 2008.

[19] Hannes Schulz, M Andreas, and Sven Behnke. Exploiting Local Structure in Stacked Boltzmann Ma-
chines. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, 2010.

[20] J.C. Spall. Introduction to stochastic search and optimization: estimation, simulation, and control. John
Wiley & Sons, 2003.

9

http://dwave.files.wordpress.com/2007/08/20070810_d-wave_quantum_annealing.pdf
http://dwave.files.wordpress.com/2007/08/20070810_d-wave_quantum_annealing.pdf

	Introduction
	Background
	P=NP and why we're not crazy
	Model
	Backward filtering forward sampling
	Chimera graphs

	Parameter Warping
	Simultaneous Perturbation Stochastic Approximation

	Experiments
	Conclusion

