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Motivation

We present foundational theoretical results on distributed parameter estimation for
undirected probabilistic graphical models. We introduce a general condition on composite
likelihood decompositions of these models which guarantees the global consistency of
distributed estimators, provided the local estimators are consistent.

Background

I Maximum Likelihood: Intractable in general graphs.

LML(θ) =
N∏
n=1

p(xn |θ)

I Composite Likelihood: Approximate ML with tractable factorisation. Terms are coupled
through overlap in θis.

LCL(θ) =
N∏
n=1

I∏
i=1

f i(xn,θ
i)

I Consensus/Distributed estimation: Estimate coupled terms independently and combine
(Liu and Ihler, 2012) or not (Mizrahi et al. 2014) repeated estimates. Asymptotic results
for consensus estimation require

(θ̂
i
)c

p→ θc

Strong LAP Argument

Strong LAP Argument Let q be a clique in G and let q ⊆ Aq ⊆ V . Suppose p(xV |θ)
and p(xAq

|α) are parametrised so that their potentials are normalised with respect to zero
and the parameters are identifiable with respect to the potentials. If Aq satisfies the Strong
LAP Condition for q then θq = αq.

p(xAq
|θ) =

∑
xV\Aq

p(xV |θ) =
1

Z (θ)

∑
xV\Aq

exp(−
∑
c∈C

E (xc |θc))

=
1

Z (θ)
exp(−E (xq |θq)−

∑
c∈Cq\{q}

E (xc |θV\q))

p(xAq
|α) =

1

Z (α)
exp(−E (xq |αq)−

∑
c∈Cq\{q}

E (xc |αc))

Relative Path Connectivity

Nodes i , j ∈ A are path connected with respect to V \ A if there is a path from i to j
through V \A. Here A = {i , j , k}; (k, j) are path connected via {3, 4} and (k, i) are path
connected via {2, 1, 5}, but the pair (i , j) are path disconnected with respect to V \ A.
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Strong LAP Condition Let G = (V , E) be an undirected graph and let q ∈ C be a
clique of interest. We say that a set A such that q ⊆ A ⊆ V satisfies the strong LAP
condition for q if there exist i , j ∈ q such that i and j are path-disconnected with respect
to V \ A.

Normalized Potentials

A Gibbs potential E (xc|θc) is said to be normalised with respect to zero if E (xc|θc) = 0
whenever there exists t ∈ c such that xt = 0.

Existence and Uniqueness of Normalized Potentials Griffeath (1976).

References

I Y. Mizrahi, M. Denil, and N. de Freitas. Linear and parallel learning of Markov random
fields. In International Conference on Machine Learning, 2014.

I Q. Liu and A. Ihler. Distributed parameter estimation via pseudo-likelihood. In
International Conference on Machine Learning, 2012.

I D. Griffeath. Introduction to random fields. In Denumerable Markov Chains, volume 40
of Graduate Texts in Mathematics, pages 425–458. Springer, 1976.

Contributions

Generalize the LAP algorithm of Mizrahi et al. (2013) to general composite likelihood fac-
torisations.

Provide a strong condition which guarantees a key assumption used in the asymptotic theory
of consensus estimators.

Unify the work on LAP and consensus estimation under a common framework.

Provide a new tool for deriving consistent distributed parameter estimation algorithms for
Markov random fields.

Auxiliary MRF Structures

I Left: Graph with clique of interest highlighted.

ICentre: Structure of marginal distribution over smallest neighbourhood satisfying LAP.

IRight: Structure of marginal distribution over smallest neighbourhood satisfying Strong
LAP.

Conditional LAP

Previous work on LAP (Mizrahi et al. 2013) required joint estimation in marginals over 1-
neighbourhoods.

Strong LAP lets us use marginals over smaller domains.

Conditional LAP lets us use conditionals instead of marginals.

Conditional LAP Argument Let q be a clique in G and let xj ∈ q ⊆ Aq ⊆ V . If Aq

satisfies the Strong LAP Condition for q then p(xV |θ) and p(xj | xAq\{xj},α) share the
same normalised potential for q.

p(xj | xAq\{xj},θ) =
p(xAq

|θ)∑
xj
p(xAq

|θ)

Conditional LAP makes dense graphs tractable, but introduces a different model/data
efficiency tradeoff.

I Left: Dense graph with clique of interest highlighted.

ICentre: Auxiliary MRF required by Strong LAP with joint estimation.

IRight: Auxiliary MRF for Conditional LAP (black nodes are conditioned on).

Connection to Distributed Pseudo-Likelihood

Conditional LAP argument says we can use conditional distributions (as in pseudo-likelihood)
provided their domains satisfy the Strong LAP Condition. In fact, the pseudo-likelihood
domains also satisfy Strong LAP.

Distributed Pseudo-Likelihood Let q = {x1, x2, .., xm} be a clique of interest, with 1-
neighbourhood Aq = q ∪ {N (xi)}xi∈q. Then for any xj ∈ q, the set q ∪N (xj) satisfies the
Strong LAP Condition for q. Moreover, q ∪ N (xj) satisfies the Strong LAP Condition for
all cliques in the graph that contain xj .

Statistical Efficiency

Let A be a set of nodes which satisfies the Strong LAP Condition for q. Let θ̂A be the
ML parameter estimate of the marginal over A. If B is a superset of A, and θ̂B is the ML
parameter estimate of the marginal over B. Then (asymptotically):

|θq − (θ̂B)q| ≤ |θq − (θ̂A)q|.
Bottom line: estimating with larger neighbourhoods is never worse, but can be much more
expensive.

Asymptotic results of Liu and Ihler (2013) apply.


