
Consistency of Online Random Forests
Misha Denil, David Matheson and Nando de Freitas

University of British Columbia, Computer Science

Motivation

I Despite extensive use, very little is known about the mathematical properties of random
forest algorithms. When do they converge, and why?

I Theoretical works typically focus on stylized versions of the algorithms used in practice.

I Online tree models have been around for a long time (e.g. Hoeffding trees).

I Online random forests have seen use recently in computer vision.

IOur contribution: A memory efficient online algorithm with provable consistency.

Stream Partitioning

I Split data randomly into two streams as it arrives:
IStructure points influence the structure of the tree (cell partitions).
IEstimation points estimate class membership probabilities in the leaves.

I Stream assignment happens uniformly at random in each tree.

I Could have an additional null stream but it doesn’t seem to help in practice.

Leaf Splitting Mechanism

A

A′

A′′

A′ A′′

A

d

I When a leaf is created, choose min(1 + Poisson(λ),D) distinct candidate dimensions.

I Choose candidate split points by projecting the first m (structure) points into each
candidate dimension.

I When a new structure point arrives:
I Update structural statistics in each candidate child.
I Optionally split if criteria are met.

I When a new estimation point arrives:
I Update estimation statistics in each candidate child.
I Update the predictor in the leaf.

IBelow: Example of two trees processing a single data point.

Active Leaf

Data point

Structure Statistics

Estimation Statistics

Leaf Splitting Rules

IRule 1: Refuse to create new leafs with fewer than α(d) (estimation) points.

IRule 2: If the information gain from a split is less than τ refuse to choose that split.

IRule 3: If there are more than β(d) points in the leaf to be split then ignore Rule 2.

I The first rule ensures that leafs are not split too often, so we eventually have a good
estimate of the probability in each leaf.

I The second rule discriminates between eligible splits based on a greedy heuristic.

I The third rule ensures that no branch of the tree ever stops growing completely.

Memory Management

I Growing trees online is memory intensive. The bottleneck is storing statistics for
candidate splits (these dwarf the cost of storing the rest of the tree).

I Each leaf requires O(candidate dimensions * candidate split points * number of classes).

I Offline trees do not have this problem.

I We use a very simple idea from Hoeffding trees.

I Pick a fixed size for the fringe. Leafs in the
fringe are active, the rest are inactive.

I For active leafs, store
I the full splitting statistics.

I For inactive leafs, store
I an estimate of p = P (X ∈ A)
I an estimate of e = P (g(X ) 6= Y |X ∈ A)

I The product of these two is an upper bound on
the possible improvement from splitting A.

p̂ = 1
12

ê = 0
1

p̂ = 5
12

ê = 2
5

p̂ = 2
12

ê = 1
2

p̂ = 4
12

ê = 1
4

I When a leaf is split a place in the fringe opens up. The inactive leaf with the largest
improvement bound is activated to take its place.

Random Forest Publications

2002 2004 2006 2008 2010 2012 2014
0

2000

4000

6000

8000

10000

12000

14000
Random Forest Publications

2002 2004 2006 2008 2010 2012 2014
0

2

4

6

8

10

12

14
Random Forest Theory Publications

Proof outline

I If the base classifier is consistent then the ensemble is consistent.
I Sufficient to prove a single tree is consistent.

I If a classifier is consistent conditioned on I ∈ I and ν(I) = 1 then the classifier is
consistent without conditioning on I .
I Use I as an infinite sequence partitioning data into structure and estimation points.

Require each stream infinitely long.

S I E

I Reduce to several single class problems by mapping (X ,Y ) 7→ (X , I{Y = k})

I Apply theorem from Devroye 1996.
I Requires: Ne(At(X )) → ∞ and diam(At(X )) → 0

I First condition: follows from splitting mechanism plus assuming X has a density.

I Second condition: show leafs will be split infinitely often and that the size of a leaf is
reduced each time it is split.
I Bound time before a single split, iterate to bound time to arbitrary number of splits.
I Show that expected size of first dimension shrinks after a split.

I Extension to a bounded fringe: Sufficient to show that for any inactive leaf, the
probability it has not been activated by time t goes to 0 as t grows.
I Bound number of splits as a function of number of data points with Hoeffding bounds.

Small Experiments

102 103 104

Data Size

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

ur
ac

y

Forest and tree accuracy

Trees
Forest
Bayes

102 103

Data Size

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

USPS

Offline
Online
Saffari et al. (2009)

I Left: Compare the accuracy of the forest to the trees on a simple synthetic problem.
Even with consistent base classifiers there is a significant benefit to averaging in finite
time.

IRight: Comparison between online and offline performance on the USPS data set. Both
online forests use 10 passes through the data.

Kinect Experiments

103 104 105 106

Data Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

ur
ac

y

Forest Accuracy

Saffari et al. (2009)
Online

I Task: Assign a body part label to each pixel in a depth image.

I Left: Generate pairs of 640x480 resolution depth and body part images by rendering
random poses from the CMU mocap dataset (depth / ground truth / predictions).

I Sample 50 pixels for each body part class from each pose for training.

I Centre: Each split thresholds the depth difference between two pixels described by two
offsets from the pixel being classified. Candidate pairs of offsets are sampled from a 2d
Gaussian distribution with variance 75.0.

I Right: Comparison between our algorithm and Saffari (2009). Limiting the fringe size to
1000 nodes we require 1.6GB for leaf statistics. Saffari (2009) requires 10GB with a fixed
depth of 8.

Code

I Code for all experiments:
I https://github.com/david-matheson/rftk-colrf-icml2013

I General purpose random forest library:
I https://github.com/david-matheson/rftk

http://www.cs.ubc.ca/~mdenil

https://github.com/david-matheson/rftk-colrf-icml2013
https://github.com/david-matheson/rftk
http://www.cs.ubc.ca/~mdenil


Consistency of Online Random Forests
Misha Denil, David Matheson and Nando de Freitas

University of British Columbia, Computer Science

http://www.cs.ubc.ca/~mdenil

http://www.cs.ubc.ca/~mdenil


Consistency of Online Random Forests
Misha Denil, David Matheson and Nando de Freitas

University of British Columbia, Computer Science

http://www.cs.ubc.ca/~mdenil

http://www.cs.ubc.ca/~mdenil

