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Motivation

I Despite extensive use, very little is known about the mathematical properties of random
forest algorithms. When do they converge, and why?

I Theoretical works typically focus on stylized versions of the algorithms used in practice.

I Online tree models have been around for a long time (e.g. Hoeffding trees).

I Online random forests have seen use recently in computer vision.

IOur contribution: A memory efficient online algorithm with provable consistency.

Stream Partitioning

I Split data randomly into two streams as it arrives:
IStructure points influence the structure of the tree (cell partitions).
IEstimation points estimate class membership probabilities in the leaves.

I Stream assignment happens uniformly at random in each tree.

I Could have an additional null stream but it doesn’t seem to help in practice.

Leaf Splitting Mechanism
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I When a leaf is created, choose min(1 + Poisson(λ),D) distinct candidate dimensions.

I Choose candidate split points by projecting the first m (structure) points into each
candidate dimension.

I When a new structure point arrives:
I Update structural statistics in each candidate child.
I Optionally split if criteria are met.

I When a new estimation point arrives:
I Update estimation statistics in each candidate child.
I Update the predictor in the leaf.

IBelow: Example of two trees processing a single data point.

Active Leaf

Data point

Structure Statistics

Estimation Statistics

Leaf Splitting Rules

IRule 1: Refuse to create new leafs with fewer than α(d) (estimation) points.

IRule 2: If the information gain from a split is less than τ refuse to choose that split.

IRule 3: If there are more than β(d) points in the leaf to be split then ignore Rule 2.

I The first rule ensures that leafs are not split too often, so we eventually have a good
estimate of the probability in each leaf.

I The second rule discriminates between eligible splits based on a greedy heuristic.

I The third rule ensures that no branch of the tree ever stops growing completely.

Memory Management

I Growing trees online is memory intensive. The bottleneck is storing statistics for
candidate splits (these dwarf the cost of storing the rest of the tree).

I Each leaf requires O(candidate dimensions * candidate split points * number of classes).

I Offline trees do not have this problem.

I We use a very simple idea from Hoeffding trees.

I Pick a fixed size for the fringe. Leafs in the
fringe are active, the rest are inactive.

I For active leafs, store
I the full splitting statistics.

I For inactive leafs, store
I an estimate of p = P (X ∈ A)
I an estimate of e = P (g(X ) 6= Y |X ∈ A)

I The product of these two is an upper bound on
the possible improvement from splitting A.
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I When a leaf is split a place in the fringe opens up. The inactive leaf with the largest
improvement bound is activated to take its place.

Random Forest Publications
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Proof outline

I If the base classifier is consistent then the ensemble is consistent.
I Sufficient to prove a single tree is consistent.

I If a classifier is consistent conditioned on I ∈ I and ν(I) = 1 then the classifier is
consistent without conditioning on I .
I Use I as an infinite sequence partitioning data into structure and estimation points.

Require each stream infinitely long.

S I E

I Reduce to several single class problems by mapping (X ,Y ) 7→ (X , I{Y = k})

I Apply theorem from Devroye 1996.
I Requires: Ne(At(X )) → ∞ and diam(At(X )) → 0

I First condition: follows from splitting mechanism plus assuming X has a density.

I Second condition: show leafs will be split infinitely often and that the size of a leaf is
reduced each time it is split.
I Bound time before a single split, iterate to bound time to arbitrary number of splits.
I Show that expected size of first dimension shrinks after a split.

I Extension to a bounded fringe: Sufficient to show that for any inactive leaf, the
probability it has not been activated by time t goes to 0 as t grows.
I Bound number of splits as a function of number of data points with Hoeffding bounds.

Small Experiments
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I Left: Compare the accuracy of the forest to the trees on a simple synthetic problem.
Even with consistent base classifiers there is a significant benefit to averaging in finite
time.

IRight: Comparison between online and offline performance on the USPS data set. Both
online forests use 10 passes through the data.

Kinect Experiments
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Online

I Task: Assign a body part label to each pixel in a depth image.

I Left: Generate pairs of 640x480 resolution depth and body part images by rendering
random poses from the CMU mocap dataset (depth / ground truth / predictions).

I Sample 50 pixels for each body part class from each pose for training.

I Centre: Each split thresholds the depth difference between two pixels described by two
offsets from the pixel being classified. Candidate pairs of offsets are sampled from a 2d
Gaussian distribution with variance 75.0.

I Right: Comparison between our algorithm and Saffari (2009). Limiting the fringe size to
1000 nodes we require 1.6GB for leaf statistics. Saffari (2009) requires 10GB with a fixed
depth of 8.

Code

I Code for all experiments:
I https://github.com/david-matheson/rftk-colrf-icml2013

I General purpose random forest library:
I https://github.com/david-matheson/rftk

http://www.cs.ubc.ca/~mdenil
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