Boltzmann Machines

A Boltzmann Machine is a probabilistic graphical model defined on a complete graph of binary variables. The graph is partitioned into “visible” units v, where values are observed during training and “hidden” units h, where values must be inferred. The probability of observing a state in the Boltzmann Machine is governed by its energy function

$$E(v, h) = -\sum_i W_i v_i h_i - \sum_{ij} B_{ij} v_i h_j - \sum_i L_i v_i$$

We study models with different graphical structures between the hidden units.

- Chain structured hidden connections, which are easy to sample from.
- Chimera structured hidden connections, which reflect the architecture of the D-Wave machine.

Units intended to be realized on the hardware are marked with a small diagonal bar.

Quantum Annealing

Quantum Annealing solves problems by encoding them in a physical system

$$F[\rho] = \text{tr} (\rho V) + \lambda \text{tr} (\rho J) + \frac{1}{T} \text{tr} (\rho \ln \rho)$$

- $\rho = |x \rangle \langle x|$ is the density matrix, where x is a distribution over the state of the system. If the state space has n bits then ρ has dimensions $2^n \times 2^n$.
- V is the problem Hamiltonian, which subsumes W, U and L in a Boltzmann Machine.
- K is a quantum disordering term which is minimized when all states are in uniform superposition.
- λ is a scalar annealing parameter.
- T is the temperature.

In the D-Wave machine...

- V is set by the user.
- T is large at the beginning of computation and small at the end.
- The classical term is very small ($T \approx 0$).

D-Wave Hardware

The D-Wave hardware realizes an Ising model with a type of graphical structure called a Chimera. A Chimera (M, N, L) graph is formed by connecting an $M \times N$ grid of $L \times L$ dense bipartite graphs. The picture on the left shows the connectivity pattern of a Chimera $(3, 3, 4)$ graph.

The D-Wave machine realizes a larger Chimera $(4, 4, 4)$ graph. Future versions of the hardware will implement larger Chimera graphs.

Selected References