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Motivation

I Boltzmann Machines are very general and powerful models of structure, but training an
unrestricted Boltzmann Machine is very difficult.

I Restricted Boltzmann Machines make learning tractable by enforcing an advantageous
conditional independence structure between layers in the model. Tractability comes at
the cost of reduced expressive power.

I Boltzmann Machines are formally equivalent to the Ising model from statistical physics.
This suggests the following training procedure:

1. Transform the Boltzmann Machine into an Ising model.

2. Set up a physical system which realizes the transformed problem and “run the physics” to allow the
system to equilibrate.

3. Measure the system to obtain a realization of states in the Ising model.

4. Transform the Ising samples into samples from the Boltzmann Machine.

I D-Wave Systems has produced hardware to realize steps (2) and (3).

Boltzmann Machines

A Boltzmann Machine is a probabilistic graphical model defined on a complete graph of
binary variables. The graph is partitioned into “visible” units v, where values are observed
during training and “hidden” units h, where values must be inferred. The probability of
observing a state in the Boltzmann Machine is governed by its energy function

E (v,h) = −
∑
ij

Wijvihj −
∑
jk

Ujkhjhk −
∑
i`

Li`viv`

We study models with different graphical structures between the hidden units.
I Chain structured hidden connections, which are easy to sample from

I Chimera structured hidden connections, which reflect the architecture of the D-Wave
machine.

Units intended to be realized on the hardware are marked with a small diagonal bar.

Quantum Annealing

Quantum Annealing solves problems by encoding them in a physical system

F [ρ] = tr(ρV ) + Γ tr(ρK ) + T tr(ρ ln ρ)

Problem term Quantum term Classical term

I ρ = |x〉〈x | is the density matrix, where x is a distribution over the state of the system. If
the state space has n bits then ρ has dimensions 2n × 2n.

IV is the problem Hamiltonian, which subsumes W , U and L in a Boltzmann Machine.

IK is a quantum disordering term which is minimized when all states are in uniform
superposition.

I Γ is a scalar annealing parameter.

IT is the temperature.

In the D-Wave machine. . .

IV is set by the user.

I Γ is large at the beginning of computation and small at the end.

I The classical term is very small (T ≈ 0).

D-Wave Hardware

The D-Wave hardware realizes an
Ising model with a type of graphical
structure called a Chimera.

A Chimera(M ,N , L) graph is
formed by connecting an M × N
grid of L× L dense bipartite graphs.

The picture on the left shows the
connectivity pattern of a
Chimera(3, 3, 4) graph.

The D-Wave machine realizes a
larger Chimera(4, 4, 4) graph.
Future versions of the hardware will
implement larger Chimera graphs.

Chimera(N ,M , L) = IM ⊗ IN ⊗
[

0 1
1 0

]
⊗ 1L + LM ⊗ IN ⊗

[
1 0
0 0

]
⊗ IL + IM ⊗LN ⊗

[
0 0
0 1

]
⊗ IL

Backward Filtering Forward Sampling

Suppose we have a Restricted Boltzmann Machine with chain structured hidden units whose
energy function is given by

E (v,h) = −
∑
ij

Wijvihj −
∑
|j−k|<2

Ujkhjhk −
∑
i

Liivi ,

Because of how the hidden connections have been restricted, the conditional distribution
over the hidden units factors as

p(h|v) = p(h1 = 1|v)

|h|∏
j=2

p(hj = 1|h1:j−1, v) = p(h1 = 1|v)

|h|∏
j=2

p(hj = 1|hj−1, v) .

The marginal distribution for p(h1 = 1|v) can be found via a backwards pass of belief
propagation. Starting at the end of the chain, for each j = |h| − 1, . . . , 1 we compute

mj+1→j(hj) =
∑
hj+1

φj+1(hj+1)ψj+1(hj, hj+1)mj+2→j+1(hj+1)

ψj+1(hj, hj+1) = (Uj+1,j + Uj ,j+1)hjhj+1

φj(hj) =
∑
i

Wijvi + Ujj

The marginal distribution p(h1 = 1|v) is then given by

p(h1 = 1|v) ∝ φ1(h1)m2→1(h1)

With this information we can start with p(h1 = 1|v) and use the factorization above to
sample sequentially from the joint distribution over hidden units.

Parameter Warping

I If we ask the hardware for samples from P(x |θ) we get samples from P(x |W (θ)), where
W is an unknown non-linear function.

IW : R832 → R832, so estimating it is very hard (and we actually care about its gradient,
which is even worse to estimate).

IW is caused by interactions between proximate parameter realizations in hardware, so we
can take

I This is an engineering problem and will be solved in time, but it is still something we
need to deal with right now.

I Our solution is to use an alternative objective function which can be optimized as a black
box.

I Black box optimization allows us to avoid knowledge of W because the relationship
between parameters and objective values is treated as completely opaque.

I Our optimizer minimizes the one step reconstruction error on the training set.

Simultaneous Perturbation Stochastic Approximation

I An algorithm for approximate gradient based optimization of noisy, differentiable, black
box functions.

I Requires that the objective be differentiable, but does not require explicit access to the
objective gradient.

Given an objective function J(θ) and an initial value θ0, at time t during the optimization
SPSA preforms the update

θt+1 = θt − atgt(θt)

where gt(θt) is a stochastic estimate of the gradient of J(θt) given by

∇θJ(θt) ≈ gt(θt) =
1

2ct
(J(θt + ct∆t)− J(θt − ct∆t))∆−1

t

where ∆−1
t denotes the elementwise inverse of the vector ∆t. At each step, each element

of ∆t is chosen independently from {−1, 1} with equal probability.

Experiments
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I SPSA based methods achieve lowest error overall on both tasks.

I Adding chain structured latent connections improves performance over the baseline.
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