Bayesian Optimization for Gaze Selection
CPSC 540 Cour se Project

Misha Denil
Department of Computer Science
University of British Columbia
Vancouver, Canada
ndeni | @s. ubc. ca

Abstract

This project extends the attentional tracking model dgyediy Bazzani et al. [1]
to include gaze selection strategies which operate in thggmce of partial infor-
mation and on a continuous action space. We show that a sti@igard ex-

tension of the existing strategy to the partial informatsstting results in poor
performance, and we propose an alternative method baseddalimg the re-
ward surface as a Gaussian process. This approach givepgdodmance in the
presence of partial information and allows us to expand ttiemaspace from a
small, discrete set of fixation points to a continuous domain

1 Introduction

In this project we consider tracking objects in video using@del inspired by human vision. The
human visual system exploits the ability to focus attentiara narrow region of the visual field in
order to cope with the vast amount of available informati®n \We mirror this structure through
an appearance model with a high resolution central regidneaow resolution periphery. A gaze
selection strategy is learned online to choose fixationtpoirhich lead to low uncertainty in the
location of the target object.

The model used in this project has been previously desciibgt]. We briefly review the basic
structure here, but in order to fully appreciate the settiegeader must be familiar with the original
paper. Essential details of the full model which are tanigéta the goals of this project, such as the
design of the appearance model and update rules for thelpdittier, will not be covered here.

The tracking model is composed of two interacting moduleswthat andwheremodules, which
represent the appearance of the target object and itsdodatthe scene, respectively. This separa-
tion of responsibility is a common feature in models from¢benputational neuroscience literature
as it is believed to reflect the structure of information gesing in the human brain [3]. Thehat
module compares partial observations of an object tempdatdservations of the scene using an
appearance model, and for the purposes of this projectaitetiaas a black box process.

Thewheremodule is composed of a localization module and fixation ntedidnich work coopera-
tively to track the target. The localization module tradke bocation, velocity and scale of the target
using a patrticle filter. This component is responsible fagrahg the appearance template with the
full scene so that the remaining modules can operate indiegpely of the object’s position and scale.
The fixation module learns a policy to select fixation poirtiative to an object template. These
fixation points are the centers of partial template obsemwat and are compared with observations
of the corresponding locations in the scene using the appeamodel. Reward is assigned to each
fixation based on the uncertainty of the target location eha@ne step. The fixation module uses
the reward signal to adapt its gaze selection policy to aelgeod localization.
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Figure 1: The full graphical model. The state of the targgecitis given byx,. This state affects
the input to the appearance mogg) which is treated as a black box in this project. The beliafest
by, is computed by combining the previous belief state withdilneent observation and the selected
fixation point. This generates a reward signalyhich is used to update the gaze policy. At each
time step the gaze selection policy is used to select a spactfiona,. The structure of tha, box
depends on which gaze selection policy is used.

The graphical structure of our model is shown in Figure 1.

We consider two new implementations of the fixation modukev®us work with this model used
Hedge [4, 5] to learn the gaze selection policy. We compaetrformance of this algorithm to
EXP3 [6, 7], which is a straightforward generalization ofdge to the partial information setting.
This is motivated by the fact that in order to build a seletfolicy Hedge must observe the reward
not only for the selected action at each step, but also tharcewhich would have been received for
the actions which were not chosen. Within the present fraonlethis means evaluating all possible
gaze locations at each time step, which somewhat negatbstiedit of having a selection policy in
the first place.

In addition to EXP3, we consider a gaze selection policy t@seBayesian optimization. Bayesian
optimization is a framework for optimizing expensive castdtions [8], where in addition to finding
the optimum of some objective function we have the addifiooastraint that we would like to find
the optimum value with as few evaluations of the objectivp@ssible. In our case we associate cost
with tracking uncertainty, and our goal is to quickly find ficce points which minimize this cost.

2 Modd

2.1 State-space model

The wheremodule models the unobserved state of the target okje@s a Markov process with
initial distributionp(x,) and transition probability(x;|x;—1,a;—1) wherea;_; is the fixation point
chosen in the previous time step. Observatonare assumed to be conditionally independent given
the current state and action. The model can be summarizell@ass:

p(x0)
p(xe|x¢—1,8,1) fort>1
p(vilxe,a;) fort >1
We aim to estimate the filtering distribution, loelief stateb, = p(x;|v1.¢, a1.¢) recursively through

time! Since this distribution is intractable except in very simphses, we approximate it with a
particle filter [9]. The details of the particle filter are nilgsangential to this project and can be

"We use the notatiof;.; £ {x1,...,x:}.



found in [1], what is important here is that the posteriotritisition is approximated as
N .
pldxoulvie are) & Y wi” 8 (dxo.r) (1)
i1 0:t

using a weighted particle populati({ﬁéfi, wgi)}f\’zl. The importance Weightpst(i) are used by the
fixation module to determine the reward for the action ch@gdimet.

2.2 Appearance model

The purpose of the appearance model is to evaluate theyqo#lt match between a partial ob-
servation of the object template and an observation of thaescObject templates are formed by
using optical flow to detect moving objects in the scene, aticheting a rectangular region of the
image around the moving object. Comparisons between thplé¢enmage and new observations
are made using a factored RBM [10]. The details of how thisgarson is preformed can be found
in [1]. For the purposes of this project the appearance medetated as a black box process.

2.3 Reward function

We define the instantaneous rewayth; |b;) as a function of the chosen action, conditioned on the
belief state. We also define the cumulative reward achiefted& rounds as

T

RT = Zrt(at|bt) . (2)

t=1

The goal of the gaze selection policy, is to select an acti@aeh time step so as to maximize the
cumulative reward. Many different reward functions couddused here, depending on what criteria
we choose to optimize. In this project we use

N

ri(alby) =Y (wi)?

=1

which is proportional to the inverse of the effective sangite of the particle filter [11]. This choice
of reward function encourages fixation points which leadelielfs with low uncertainty.

3 Gazecontrol

This project compares three different strategies for liearthe gaze selection policy. We use the
strategy adopted in [1] as a baseline method and compareiitsrmance to two very different
alternatives.

Hedge is used in [1] to learn a randomized gaze selectionypalnd the authors demonstrate that this
approach performs better than other more naive gazeiselecethods. Hedge requires knowledge
of the rewards for all actions at each time step, which is ealistic when gazes must be preformed
sequentially, since the target object will move betweertitixes.

EXP3 is an extension of Hedge to partial information gamés [#nlike Hedge, EXP3 requires
knowledge of the reward only for the action selected at eaoh step. EXP3 is more appropriate to
the setting at hand, and is also more computationally effittean Hedge; however, this comes at a
cost of substantially lower theoretical performance.

Both Hedge and EXP3 learn gaze selection policies whichslamong a discrete set of predeter-
mined fixation points. We can instead learn a continuouspdly estimating the reward surface

using a Gaussian process [12]. By assuming that the rewdatsus smooth, we can draw on the

tools of Bayesian optimization [8] to search for the optimake location using as few exploratory
steps as possible.

The following sections describe the EXP3 and Bayesian aptition approaches in more detail.



3.1 EXP3

To use EXP3 [6] for gaze selection we must first discretizeatt®n space by selectinfg possible
fixation points. EXP3 maintains an importance weigfii) for each possible fixation point and,
at each time step, these weights are normalized and mixédaniniform distribution to obtain a
stochastic gaze selection policy. An action is selectedralig to this policy, and reward for that
action is observed (this is in contrast to Hedge, which atpbint must observe the rewards for each
possible action). The observed reward is then used to ufitatmportance weights and the process
repeats. Pseudo code for EXP3 is shown in Algorithm 1.

Algorithm 1 EXP3

Input: ~ € (0,1]

Input: ws(i) =1fori € Actions

fort=1,2,...do _

pe(i) = (1= 2) 50 + %
a; ~ (pe(1),...,p(K)) /I sample from the distributiofp, ())
Tt(i) < rt(at|bt, 0t)
for j € Actionsdo

() {Tt(j)/pt(j) ifj = a,

0 otherwise
wi1(f) < wi(f) exp (V7 (4)/ K)
end for
end for

3.2 Bayesian optimization

Both Hedge and EXP3 rely on discretizing the space of passikdtion points and learn a distri-
bution over this finite set. In contrast, Bayesian optimarais able to treat the space of possible
fixation points as fully continuous by placing a smoothnags@n how reward is expected to vary
with respect to location. Intuitively, if we know the rewaatl one location, then we expect other,
nearby locations to produce similar rewards. Gaussiarggsopriors encode this type of belief [12],
and have been used extensively for optimization of costtfans when it is important to minimize
the total number of function evaluations [8].

We model the reward function (a;|b;) £ r(a;|b;, 8;) as a zero mean Gaussian process
T(at|bt7 0t) ~ QP(O, k(ata a;§|bt7 et)) )

whereb, is the belief state, (see Section 2), #hdare the model hyperparameters (see Section 3.3).
The kernel functiork(-, -), gives the covariance between the reward at any two gazédosaFor
notational simplicity the explicit dependencerdf) andk(-, -) onb, and8; will be dropped.

Given a set of observations we can compute the posterioigpireddistribution forr(-)
r(afri, ave) ~ N(m(a), 7 (a)) 3)
me(a) = kT[K + 021 ey
s3(a) = k(a,a) — kT [K + o217k

whereo? is a hyperparameter indicating the level of noise in our olz@®ns which we absorb into
0., and

k(aj,a1) -+ k(a,a;)
K=| :
k(ag,a1) -+ k(agar)
k = [k(aj,a) --- k(as,a)]
rye = [7“1 Tt]T



Equation 3 is a Gaussian process estimate of the rewarctswafal can be used to select a fixation
point for the next time step. This estimate gives both a jgtedireward value and an associated
uncertainty for each possible fixation point. This is thesisgth of Gaussian processes for this
type of optimization problem, since the predictions can beduto balance exploration (choosing
a fixation point where the reward is highly uncertain) andlexation (choosing a point we are
confident will have high reward).

There are many selection methods available in the litezatdnich offer different tradeoffs between
these two criteria. In this project we use GP-UCB [13] whielests

apy1 = argmaxmy (a) + /Prst(a) (4)

where; is a parameter. The settingy = 2log(t372/34) (with 6 = 0.001) is used throughout
this project, since it has been shown that the cumulativeetgge. the gap between Equation 2
and the optimalRr) with this parameter setting grows sub-linearly with timghwoverwhelming
probability.

Equation 4 must still be optimized to fingl ;, which can be performed using standard global
optimization tools. We usBl RECT [14] in this project due to the existence of a readily avddab
implementation.

3.3 Selecting the kernel function
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Figure 2: Graphical model for Bayesian optimization. Thare length scales in each dimension,

o2, is the magnitude parameter amgl is the noise level. In our modef, ands? follow a uniform
prior and the/; follow independent student-t priors.

We consider three different possibilities for the Gausgiestess kernel function. The first is the
squared exponential kernel, which computes the covariaeivecen different actions as

k(a;,a;) = o2, exp (—%72) . (5)

We also consider two kernels from the Matern family. Kesniel this family are indexed by a
parameter, and have the general form

1—v

ko) = 0% 5 (VEr) K (V) ©

where K, (+) is a modified Bessel function of the second kind. The Matenméls have a simple

closed form for half integer values of[12], and we consider specifically the cases where 3/2
andv = 5/2. In Equations 5 and 6, the valuenfs given by

a —a 2
2 E : i,k g,k
r2 =
( Ly, ) ’
k=1
where the summation runs over the dimensions of the actiacesfy = 2 in our case).

The GP regression is controlled by several hyperparametgreontrols the overall magnitude of
the covariance, angf (see Equation 3) controls the amount of observation noise r@maining pa-
rameter /s, ..., {p} are length scale parameters which control the range of theriemce effects
in each dimension.



Treatment of the hyperparameters requires special caasioie in this setting. The pure Bayesian
approach is to put a prior on each parameter and integrate ol of the predictive distribution.
However, since the integrals involved are not tractabldygioally, this requires computationally
expensive numerical approximations. Speed is an issuesirse GP-UCB requires that we opti-
mize a function of the posterior process at each time stefpsistance, computing Monte Carlo
averages for each evaluation of Equation 3 is prohibitigédyv.

An alternative approach is to choose parameter values viégnmian likelihood. This can be done
very quickly, and allows us to make speedy predictions; vewen this case we suffer from prob-
lems of data scarcity, particularly early in the trackinggess when few observations have been
made. The length scale parameters are particularly pronectving very poor estimates when
there is little data available.

We have found that using informative priors for the lengthlsgarameters and making MAP,
rather than ML, estimates at each time step provides a salti the problems described above.
MAP estimates can be made quickly using gradient optimorathethods [12], and informative

priors provide resistance to the problems encounteredMiithThe experiments in Section 4 place
uniform priors on the magnitude and noise parameters arwt prlependent Student-t priors on
each length scale parameter. The experiments also usetiah diaita collection phase of 10 time

steps before any adjustment of the parameters is made.

4 Experiments

In this section, three experiments are carried out to evalile performance of the different gaze
selection policies. The first experiment examines how théopmance of Bayesian optimization
varies with respect to the selection of kernel function, Hreldegree of smoothness and informa-
tiveness of the length scale prior. We demonstrate thatehfepnance of of Bayesian optimization
is not strongly affected by the choice of kernel or prior. Tada set for this experiment consists
of several videos of digits from the MNIST data set moving oblack background. The target
in each video encounters one or more partial occlusionshwthie tracking algorithm must handle
gracefully.

In the second experiment we compare the performance of eaehgglection method on the same
videos except this time each sequence has been corrupted®yn8ise. We measure the error
between the estimated track and the ground truth for each gglection method, and demonstrate
that Bayesian optimization preforms comparably to Hedge that EXP3 is not able to reach a
satisfactory level of performance. We also demonstratétgtieely that the Bayesian optimization
approach learns good gaze selection policies on this data se

Finally, our third experiment provides evidence that thgéssan optimization method can general-
ize to real world data.

The results of our first experiment are shown in Figure 3. Tloeass rate is measured as the pro-
portion of runs where the algorithm is able to track the tatgeughout the entire test sequence.
The success rate is computed for each digit across ten ranthamesults in Figure 3 show distri-

butions over digit classes at each scale. The success rés waross the various permutations of

Strong Prior (sexp) Strong Prior (matern32) Strong Prior (matern52) Weak Prior (sexp) ‘Weak Prior (matern32) Weak Prior (matern52)
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Figure 3: Results from the first experiment. On the left aczess rates for each kernel type using a
strong prior for the length scale parameters. On the rigtetSslts for the same kernels using weaker
priors on the length scale. In all cases the noise and matmjtiors are uniform. The length scale
parameters have Student-t priors with the mean indicatathahe x-axis. The strong priors use a
scale of 3 with 3 degrees of freedom and the weak priors usal@ st10 with 1 degree of freedom.



0 T 2 3 Z 5 5 7 8 9 AVg
Bayesopt | 5.36 792 2.62 2.05 1.70 831 294 12.09 152 9.06 576
(2.32) (2.52) (3.89) (1.67) (5.10) (3.35) (2.28) (3.53) (2.76) (1.66) (2.91)
Hedge 297 3.20 297 2.92 314 2.96 2.86 2.98 2.81 315 3.00
(1.56) (2.19) (1.99) (2.00) (1.80) (2.08) (1.96) (1.76) (1.64) (3.73) (2.07)
EXP3 318 3.03 65.46 91.81 262 7.20 67.54 297 3.06 77.01 3239
(5.05) (10.08) | (3212.16)| (3671.66)| (2.35) (303.29) | (2346.82)| (3.99) (2.71) (3135.17)|| (1269.33)

Table 1: Tracking error on several video sequences usifigréift methods for gaze selection. The
table shows mean tracking error as well as the error varignbeackets) over a single test sequence.

priors and kernel types; however, this variation is smatl #re performance is consistently high.
This indicates that the choice of kernel and prior are notmsa to the performance of Bayesian
optimization on this task, and following this we select theared exponential kernel with a weak
prior and a length scale of 8 to use for the remaining experime

Table 1 reports the results from our second experiment. @ble tshows the mean tracking er-
ror, measured by averaging distance between the estimatedraund truth track over the entire
video sequence. Here we see that the Bayesian optimizatfmoach compares favorably to Hedge
in terms of tracking performance, and that EXP3 preformstartially worse than the other two
methods. Although Hedge preforms marginally better thapeBin optimization, it is important
to remember that Bayesian optimization solves a signifiganore difficult problem. Hedge relies
on discretizing the action space, and must have access tewlaeds for all possible actions at each
time step. In contrast, Bayesian optimization considetslp éontinuous action space, and receives
reward information only for the chosen actions.

Figure 4 shows the reward surfaces learned for each digitdye&an optimization, as well as a
visualization of the overall best fixation points using daggregated across ten runs. The optimal
fixation points found by the algorithm are tightly clusteradd the resulting observations are very
distinguishable.

In our third experiment we use the Youtube celebrity datéaseh [15]. This data set consists

of several videos of celebrities taken from Youtube and @llehging for tracking algorithms as

the videos exhibit a wide variety of illuminations, expiiess and face orientations. We run our
tracking model using Bayesian optimization to learn a gagecsion policy on this data set, and
present some results in Figure 5. Although we report onlyigtige results from this experiment, it

provides anecdotal evidence that Bayesian optimizatiablis to form a good gaze selection policy
on real world data.

5 Conclusions and future work

In this project we considered two new gaze selection pdifie the visual tracking model pro-
posed in [1]. The first is a straightforward extension of tkisting policy to the partial information
case; however, we saw that this method gave poor trackirfigrpeaince even on a relatively simple
synthetic problem.

Figure 4:Top: Digit templates with the estimated reward surfaces sugmged. Markers indicate
the best fixation point found in each of ten rurBottom: A visualization of the image found by
averaging the best fixation points found across ten runs.



Figure 5: Results on a real data seér left: An example frame from the video sequenGenter

left: The tracking template with the optimal fixation window hiigjited.Center right: The reward
surface produced by Bayesian optimization. The white nrarkeow the centers of each fixation
pointin a single tracking rurRight: Input to the observation model when fixating on the best point
(Best viewed from a distance).

The second method we considered, based on Bayesian ogtoniza able not only to perform well
in the presence of partial information but also allows usquasd the set of possible fixation points
to a continuous domain. We saw that this approach performmpacably to the original method on
synthetic data and that it is able to generalize to trackatbja real world videos.

There are several possible extensions to this line of wodk.ikstance, the current model has no
ability to recover from a tracking failure. In [1] it was shovow to classify the target as it is being
tracked, and it may be possible to use this classificatioorimation to detect and recover from
tracking failure.

The gaze selection policies considered here assume thatthed surface is static throughouttime;
however, changing appearance of the target may cause tineabfikation point to shift.

A closer examination of the exploration/exploitation &aff in the tracking setting is in order. For

instance, the methods we considered assume that futuredewaee independent of past actions.
This assumption is clearly not true in our setting, sinceosig a long sequence of very poor fixa-
tion points can lead to tracking failure. The reinforcemeatning community has long considered
models which allow control over the relative importance earterm vs long-term rewards, and
it may be possible to incorporate these techniques into tegept framework. Other more direct
approaches which control exploration as a function of tiregkincertainty may also be effective.
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