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Abstract

This project extends the attentional tracking model developed by Bazzani et al. [1]
to include gaze selection strategies which operate in the presence of partial infor-
mation and on a continuous action space. We show that a straightforward ex-
tension of the existing strategy to the partial informationsetting results in poor
performance, and we propose an alternative method based on modeling the re-
ward surface as a Gaussian process. This approach gives goodperformance in the
presence of partial information and allows us to expand the action space from a
small, discrete set of fixation points to a continuous domain.

1 Introduction

In this project we consider tracking objects in video using amodel inspired by human vision. The
human visual system exploits the ability to focus attentionon a narrow region of the visual field in
order to cope with the vast amount of available information [2]. We mirror this structure through
an appearance model with a high resolution central region and a low resolution periphery. A gaze
selection strategy is learned online to choose fixation points which lead to low uncertainty in the
location of the target object.

The model used in this project has been previously describedin [1]. We briefly review the basic
structure here, but in order to fully appreciate the settingthe reader must be familiar with the original
paper. Essential details of the full model which are tangential to the goals of this project, such as the
design of the appearance model and update rules for the particle filter, will not be covered here.

The tracking model is composed of two interacting modules, thewhat andwheremodules, which
represent the appearance of the target object and its location in the scene, respectively. This separa-
tion of responsibility is a common feature in models from thecomputational neuroscience literature
as it is believed to reflect the structure of information processing in the human brain [3]. Thewhat
module compares partial observations of an object templateto observations of the scene using an
appearance model, and for the purposes of this project is treated as a black box process.

Thewheremodule is composed of a localization module and fixation module which work coopera-
tively to track the target. The localization module tracks the location, velocity and scale of the target
using a particle filter. This component is responsible for aligning the appearance template with the
full scene so that the remaining modules can operate independently of the object’s position and scale.
The fixation module learns a policy to select fixation points relative to an object template. These
fixation points are the centers of partial template observations, and are compared with observations
of the corresponding locations in the scene using the appearance model. Reward is assigned to each
fixation based on the uncertainty of the target location at each time step. The fixation module uses
the reward signal to adapt its gaze selection policy to achieve good localization.
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Figure 1: The full graphical model. The state of the target object is given byxt. This state affects
the input to the appearance modelvt, which is treated as a black box in this project. The belief state
bt, is computed by combining the previous belief state with thecurrent observation and the selected
fixation point. This generates a reward signal,rt which is used to update the gaze policy. At each
time step the gaze selection policy is used to select a specific actionat. The structure of theat box
depends on which gaze selection policy is used.

The graphical structure of our model is shown in Figure 1.

We consider two new implementations of the fixation module. Previous work with this model used
Hedge [4, 5] to learn the gaze selection policy. We compare the performance of this algorithm to
EXP3 [6, 7], which is a straightforward generalization of Hedge to the partial information setting.
This is motivated by the fact that in order to build a selection policy Hedge must observe the reward
not only for the selected action at each step, but also the reward which would have been received for
the actions which were not chosen. Within the present framework this means evaluating all possible
gaze locations at each time step, which somewhat negates thebenefit of having a selection policy in
the first place.

In addition to EXP3, we consider a gaze selection policy based on Bayesian optimization. Bayesian
optimization is a framework for optimizing expensive cost functions [8], where in addition to finding
the optimum of some objective function we have the additional constraint that we would like to find
the optimum value with as few evaluations of the objective aspossible. In our case we associate cost
with tracking uncertainty, and our goal is to quickly find fixation points which minimize this cost.

2 Model

2.1 State-space model

Thewheremodule models the unobserved state of the target objectxt, as a Markov process with
initial distributionp(x0) and transition probabilityp(xt|xt−1, at−1) whereat−1 is the fixation point
chosen in the previous time step. Observationsvt are assumed to be conditionally independent given
the current state and action. The model can be summarized as follows:

p(x0)

p(xt|xt−1, at−1) for t ≥ 1

p(vt|xt, at) for t ≥ 1

We aim to estimate the filtering distribution, orbelief state,bt = p(xt|v1:t, a1:t) recursively through
time.1 Since this distribution is intractable except in very simple cases, we approximate it with a
particle filter [9]. The details of the particle filter are mostly tangential to this project and can be

1We use the notationx1:t , {x1, . . . ,xt}.
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found in [1], what is important here is that the posterior distribution is approximated as

p(dx0:t|v1:t, a1:t) ≈
N
∑

i=1

w
(i)
t δ

x̃
(i)
0:t
(dx0:t) (1)

using a weighted particle population{x̃(i)
0:t, w

(i)
t }Ni=1. The importance weightsw(i)

t are used by the
fixation module to determine the reward for the action chosenat timet.

2.2 Appearance model

The purpose of the appearance model is to evaluate the quality of a match between a partial ob-
servation of the object template and an observation of the scene. Object templates are formed by
using optical flow to detect moving objects in the scene, and extracting a rectangular region of the
image around the moving object. Comparisons between the template image and new observations
are made using a factored RBM [10]. The details of how this comparison is preformed can be found
in [1]. For the purposes of this project the appearance modelis treated as a black box process.

2.3 Reward function

We define the instantaneous rewardrt(at|bt) as a function of the chosen action, conditioned on the
belief state. We also define the cumulative reward achieved after T rounds as

RT =

T
∑

t=1

rt(at|bt) . (2)

The goal of the gaze selection policy, is to select an action at each time step so as to maximize the
cumulative reward. Many different reward functions could be used here, depending on what criteria
we choose to optimize. In this project we use

rt(at|bt) =

N
∑

i=1

(w
(i)
t )2 ,

which is proportional to the inverse of the effective samplesize of the particle filter [11]. This choice
of reward function encourages fixation points which lead to beliefs with low uncertainty.

3 Gaze control

This project compares three different strategies for learning the gaze selection policy. We use the
strategy adopted in [1] as a baseline method and compare its performance to two very different
alternatives.

Hedge is used in [1] to learn a randomized gaze selection policy, and the authors demonstrate that this
approach performs better than other more naı̈ve gaze selection methods. Hedge requires knowledge
of the rewards for all actions at each time step, which is not realistic when gazes must be preformed
sequentially, since the target object will move between fixations.

EXP3 is an extension of Hedge to partial information games [6]. Unlike Hedge, EXP3 requires
knowledge of the reward only for the action selected at each time step. EXP3 is more appropriate to
the setting at hand, and is also more computationally efficient than Hedge; however, this comes at a
cost of substantially lower theoretical performance.

Both Hedge and EXP3 learn gaze selection policies which choose among a discrete set of predeter-
mined fixation points. We can instead learn a continuous policy by estimating the reward surface
using a Gaussian process [12]. By assuming that the reward surface is smooth, we can draw on the
tools of Bayesian optimization [8] to search for the optimalgaze location using as few exploratory
steps as possible.

The following sections describe the EXP3 and Bayesian optimization approaches in more detail.
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3.1 EXP3

To use EXP3 [6] for gaze selection we must first discretize theaction space by selectingK possible
fixation points. EXP3 maintains an importance weightω(i) for each possible fixation point and,
at each time step, these weights are normalized and mixed with a uniform distribution to obtain a
stochastic gaze selection policy. An action is selected according to this policy, and reward for that
action is observed (this is in contrast to Hedge, which at this point must observe the rewards for each
possible action). The observed reward is then used to updatethe importance weights and the process
repeats. Pseudo code for EXP3 is shown in Algorithm 1.

Algorithm 1 EXP3
Input: γ ∈ (0, 1]
Input: ω1(i) = 1 for i ∈ Actions

for t = 1, 2, . . . do
pt(i)← (1 − γ) ωt(i)∑

j ωt(j)
+ γ

K

at ∼ (pt(1), . . . , pt(K)) // sample from the distribution(pt(i))
rt(i)← rt(at|bt, θt)
for j ∈ Actionsdo

r̂t(j)←
{

rt(j)/pt(j) ifj = at

0 otherwise
ωt+1(j)← ωt(j) exp (γr̂t(j)/K)

end for
end for

3.2 Bayesian optimization

Both Hedge and EXP3 rely on discretizing the space of possible fixation points and learn a distri-
bution over this finite set. In contrast, Bayesian optimization is able to treat the space of possible
fixation points as fully continuous by placing a smoothness prior on how reward is expected to vary
with respect to location. Intuitively, if we know the rewardat one location, then we expect other,
nearby locations to produce similar rewards. Gaussian process priors encode this type of belief [12],
and have been used extensively for optimization of cost functions when it is important to minimize
the total number of function evaluations [8].

We model the reward functionrt(at|bt) , r(at|bt, θt) as a zero mean Gaussian process

r(at|bt, θt) ∼ GP(0, k(at, a′

t|bt, θt)) ,

wherebt is the belief state, (see Section 2), andθt are the model hyperparameters (see Section 3.3).
The kernel functionk(·, ·), gives the covariance between the reward at any two gaze locations. For
notational simplicity the explicit dependence ofr(·) andk(·, ·) onbt andθt will be dropped.

Given a set of observations we can compute the posterior predictive distribution forr(·)

r(a|r1:t, a1:t) ∼ N (mt(a), s
2
t (a)) (3)

mt(a) = k
T[K+ σ2

nI]
−1

r1:t

s2t (a) = k(a, a)− k
T[K+ σ2

nI]
−1

k

whereσ2
n is a hyperparameter indicating the level of noise in our observations which we absorb into

θt, and

K =







k(a1, a1) · · · k(a1, at)
...

. . .
...

k(at, a1) · · · k(at, at)







k = [k(a1, a) · · · k(at, a)]
T

r1:t = [r1 · · · rt]
T

.
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Equation 3 is a Gaussian process estimate of the reward surface and can be used to select a fixation
point for the next time step. This estimate gives both a predicted reward value and an associated
uncertainty for each possible fixation point. This is the strength of Gaussian processes for this
type of optimization problem, since the predictions can be used to balance exploration (choosing
a fixation point where the reward is highly uncertain) and exploitation (choosing a point we are
confident will have high reward).

There are many selection methods available in the literature which offer different tradeoffs between
these two criteria. In this project we use GP-UCB [13] which selects

at+1 = argmax
a

mt(a) +
√

βtst(a) (4)

whereβt is a parameter. The settingβt = 2 log(t3π2/3δ) (with δ = 0.001) is used throughout
this project, since it has been shown that the cumulative regret (i.e. the gap between Equation 2
and the optimalRT ) with this parameter setting grows sub-linearly with time with overwhelming
probability.

Equation 4 must still be optimized to findat+1, which can be performed using standard global
optimization tools. We useDIRECT [14] in this project due to the existence of a readily available
implementation.

3.3 Selecting the kernel function

aT+1

D

 ℓ i

σ2m

σ2n

T

rt

at
bt

Figure 2: Graphical model for Bayesian optimization. Theℓi are length scales in each dimension,
σ2
m is the magnitude parameter andσ2

n is the noise level. In our modelσ2
m andσ2

n follow a uniform
prior and theℓi follow independent student-t priors.

We consider three different possibilities for the Gaussianprocess kernel function. The first is the
squared exponential kernel, which computes the covariancebetween different actions as

k(ai, aj) = σ2
m exp

(

−1

2
r2
)

. (5)

We also consider two kernels from the Mátern family. Kernels in this family are indexed by a
parameterν, and have the general form

k(ai, aj) = σ2
m

21−ν

Γ(ν)
(
√
2νr)νKν(

√
2νr) , (6)

whereKν(·) is a modified Bessel function of the second kind. The Mátern kernels have a simple
closed form for half integer values ofν [12], and we consider specifically the cases whereν = 3/2
andν = 5/2. In Equations 5 and 6, the value ofr is given by

r2 =

D
∑

k=1

(

ai,k − aj,k
ℓk

)2

,

where the summation runs over the dimensions of the action space (D = 2 in our case).

The GP regression is controlled by several hyperparameters: σ2
m controls the overall magnitude of

the covariance, andσ2
n (see Equation 3) controls the amount of observation noise. The remaining pa-

rameters{ℓ1, . . . , ℓD} are length scale parameters which control the range of the covariance effects
in each dimension.
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Treatment of the hyperparameters requires special consideration in this setting. The pure Bayesian
approach is to put a prior on each parameter and integrate them out of the predictive distribution.
However, since the integrals involved are not tractable analytically, this requires computationally
expensive numerical approximations. Speed is an issue heresince GP-UCB requires that we opti-
mize a function of the posterior process at each time step so,for instance, computing Monte Carlo
averages for each evaluation of Equation 3 is prohibitivelyslow.

An alternative approach is to choose parameter values via maximum likelihood. This can be done
very quickly, and allows us to make speedy predictions; however, in this case we suffer from prob-
lems of data scarcity, particularly early in the tracking process when few observations have been
made. The length scale parameters are particularly prone toreceiving very poor estimates when
there is little data available.

We have found that using informative priors for the length scale parameters and making MAP,
rather than ML, estimates at each time step provides a solution to the problems described above.
MAP estimates can be made quickly using gradient optimization methods [12], and informative
priors provide resistance to the problems encountered withML. The experiments in Section 4 place
uniform priors on the magnitude and noise parameters and place independent Student-t priors on
each length scale parameter. The experiments also use an initial data collection phase of 10 time
steps before any adjustment of the parameters is made.

4 Experiments

In this section, three experiments are carried out to evaluate the performance of the different gaze
selection policies. The first experiment examines how the performance of Bayesian optimization
varies with respect to the selection of kernel function, andthe degree of smoothness and informa-
tiveness of the length scale prior. We demonstrate that the performance of of Bayesian optimization
is not strongly affected by the choice of kernel or prior. Thedata set for this experiment consists
of several videos of digits from the MNIST data set moving on ablack background. The target
in each video encounters one or more partial occlusions which the tracking algorithm must handle
gracefully.

In the second experiment we compare the performance of each gaze selection method on the same
videos except this time each sequence has been corrupted by 30% noise. We measure the error
between the estimated track and the ground truth for each gaze selection method, and demonstrate
that Bayesian optimization preforms comparably to Hedge, but that EXP3 is not able to reach a
satisfactory level of performance. We also demonstrate qualitatively that the Bayesian optimization
approach learns good gaze selection policies on this data set.

Finally, our third experiment provides evidence that the Bayesian optimization method can general-
ize to real world data.

The results of our first experiment are shown in Figure 3. The success rate is measured as the pro-
portion of runs where the algorithm is able to track the target throughout the entire test sequence.
The success rate is computed for each digit across ten runs and the results in Figure 3 show distri-
butions over digit classes at each scale. The success rate varies across the various permutations of
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Figure 3: Results from the first experiment. On the left are success rates for each kernel type using a
strong prior for the length scale parameters. On the right isresults for the same kernels using weaker
priors on the length scale. In all cases the noise and magnitude priors are uniform. The length scale
parameters have Student-t priors with the mean indicated along the x-axis. The strong priors use a
scale of 3 with 3 degrees of freedom and the weak priors use a scale of 10 with 1 degree of freedom.
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0 1 2 3 4 5 6 7 8 9 Avg
Bayesopt 5.36

(2.32)
7.92
(2.52)

2.62
(3.89)

4.05
(1.67)

1.70
(5.10)

8.31
(3.35)

4.94
(2.28)

12.09
(3.53)

1.52
(2.76)

9.06
(1.66)

5.76
(2.91)

Hedge 2.97
(1.56)

3.20
(2.19)

2.97
(1.99)

2.92
(2.00)

3.14
(1.80)

2.96
(2.08)

2.86
(1.96)

2.98
(1.76)

2.81
(1.64)

3.15
(3.73)

3.00
(2.07)

EXP3 3.18
(5.05)

3.03
(10.08)

65.46
(3212.16)

91.81
(3671.66)

2.62
(2.35)

7.20
(303.29)

67.54
(2346.82)

2.97
(3.99)

3.06
(2.71)

77.01
(3135.17)

32.39
(1269.33)

Table 1: Tracking error on several video sequences using different methods for gaze selection. The
table shows mean tracking error as well as the error variance(in brackets) over a single test sequence.

priors and kernel types; however, this variation is small and the performance is consistently high.
This indicates that the choice of kernel and prior are not essential to the performance of Bayesian
optimization on this task, and following this we select the squared exponential kernel with a weak
prior and a length scale of 8 to use for the remaining experiments.

Table 1 reports the results from our second experiment. The table shows the mean tracking er-
ror, measured by averaging distance between the estimated and ground truth track over the entire
video sequence. Here we see that the Bayesian optimization approach compares favorably to Hedge
in terms of tracking performance, and that EXP3 preforms substantially worse than the other two
methods. Although Hedge preforms marginally better than Bayesian optimization, it is important
to remember that Bayesian optimization solves a significantly more difficult problem. Hedge relies
on discretizing the action space, and must have access to therewards for all possible actions at each
time step. In contrast, Bayesian optimization considers a fully continuous action space, and receives
reward information only for the chosen actions.

Figure 4 shows the reward surfaces learned for each digit by Bayesian optimization, as well as a
visualization of the overall best fixation points using dataaggregated across ten runs. The optimal
fixation points found by the algorithm are tightly clustered, and the resulting observations are very
distinguishable.

In our third experiment we use the Youtube celebrity datasetfrom [15]. This data set consists
of several videos of celebrities taken from Youtube and is challenging for tracking algorithms as
the videos exhibit a wide variety of illuminations, expressions and face orientations. We run our
tracking model using Bayesian optimization to learn a gaze selection policy on this data set, and
present some results in Figure 5. Although we report only qualitative results from this experiment, it
provides anecdotal evidence that Bayesian optimization isable to form a good gaze selection policy
on real world data.

5 Conclusions and future work

In this project we considered two new gaze selection policies for the visual tracking model pro-
posed in [1]. The first is a straightforward extension of the existing policy to the partial information
case; however, we saw that this method gave poor tracking performance even on a relatively simple
synthetic problem.

Figure 4:Top: Digit templates with the estimated reward surfaces superimposed. Markers indicate
the best fixation point found in each of ten runs.Bottom: A visualization of the image found by
averaging the best fixation points found across ten runs.

7



Figure 5: Results on a real data set.Far left: An example frame from the video sequence.Center
left: The tracking template with the optimal fixation window highlighted.Center right: The reward
surface produced by Bayesian optimization. The white markers show the centers of each fixation
point in a single tracking run.Right: Input to the observation model when fixating on the best point.
(Best viewed from a distance).

The second method we considered, based on Bayesian optimization, is able not only to perform well
in the presence of partial information but also allows us to expand the set of possible fixation points
to a continuous domain. We saw that this approach performs comparably to the original method on
synthetic data and that it is able to generalize to track objects in real world videos.

There are several possible extensions to this line of work. For instance, the current model has no
ability to recover from a tracking failure. In [1] it was shown how to classify the target as it is being
tracked, and it may be possible to use this classification information to detect and recover from
tracking failure.

The gaze selection policies considered here assume that thereward surface is static throughout time;
however, changing appearance of the target may cause the optimal fixation point to shift.

A closer examination of the exploration/exploitation tradeoff in the tracking setting is in order. For
instance, the methods we considered assume that future rewards are independent of past actions.
This assumption is clearly not true in our setting, since choosing a long sequence of very poor fixa-
tion points can lead to tracking failure. The reinforcementlearning community has long considered
models which allow control over the relative importance of near-term vs long-term rewards, and
it may be possible to incorporate these techniques into the present framework. Other more direct
approaches which control exploration as a function of tracking uncertainty may also be effective.
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